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1. Introduction.

The main thesis of this paper is that there are striking similarities between
the mathematical problems of stochastic system theory, notably linear and non-
linear filtering theory, and mathematical developments underlying quantum mechanics
and quantum field theory. Thus the mathematical developments of the past thirty
years in functional analysis, lie groups and lie algebras, group representations
and probabilistic methods of quantum theory can serve as a guide and indicator
to search for an appropriate theory of stochastic systems. In the current state
of development of linear and non-linear filtering theory, it is best to proceed
by "analogy" and with care, since "unitarity" which plays such an important part
in quantum mechanics and quantum field theory is not necessarily relevant to lin-
ear and non-linear filtering theory. The partiasl differential equations that arise
in quantum theory are generally wave equations, whereas the partial differential
equations arising in filtering theory are stochastic parabolic equations. Never-
theless the possibility of passing to a wave equation by appropriate analytic con-
tinuation from the parabolic equation, reminiscent of the current program in euc-
lidean field theory, should not be overlooked.

To develop these ideas, it is best to begin with a reasonably general non-
linear filtering prohlem:

Let (Q,A,P) be the underlying probability space and let x, denote a scalar-
valued diffusion procesélahich is the solution of the following Ito stochastic

differential equation:

(1.1) dxt = f(xt)dt + g(xt)dwt R
where v, is standard Brownian notion and f satisfies appropriate assumptions so that
(1.1) has a unique solution in the sense of Ito. We shall refer to (1.1) as the

physical process. Let

(1) There is no difficulty in generalizing to the vector csase.
-1~
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(1.2) z, = h(xt) with z, € LQ(Q,A,P), denote the signal process, and we

observe the signal in the presence of another Wiener process
t

(1.3) Yy =S 2z ds +
o S

P We shall refer to (1.3) asthe observation equation.

We make the assumption that (xt, n,) are independent. Let FZ denote the

t
o-field generated by {yslo_i s < t}. The problem of non-linear filtering is to

recursively compute
(1.4) E[¢(xt)|F{], where ¢ say is a bounded, continuous function. E[¢(-)|F{]

denotes conditional expectation with respect to F{. The solution to this problem
can be obtained by Functional Integration and the Cameron-Martin-Gisanov formuls.

Define & new measure P on (£,A) by the Cameron-Martin-Gisanov transformation:

t t
ar  _ 1,72
(1-5) d:\P’ =  exp (fO zsdys - 5 ozs dS).

Under this new measure, the probability distribution of X, remains invariant,

but Yy and x_ are independent and vy is standard Brownian notion.

t

Let ﬂt denote the conditional expectation operator. Then & standard applica-

tion of the theory of conditional expectations gives us:

@

E[¢(Xt) = IFt]
~cQP 1.y
E[—: |F ]
ad *

= ¥ =
(1.6)  m,(8) = Elo(x,)|F]
vhere E denotes expectation with respect to the P-measure. The mapping ¢r*wt(¢) is de~-
fined $o be the filter for the stochastie system (1.1)-(1.3). ﬂt_itself can be
thought of as a measure-valued stochastic process.

For what follows it is convenient to rewrite (1.6) in the form of an input-

state-output relation. For this purpose define

AN Fo <5 e
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Then (1.6) may be rewritten as

ot(db)

(1.8) “t(¢) = BZTIT , where

1 denotes the constant function 1 for all x.
In the above Py is to be thought of as the state of the filter and equation
(1.8) as the state-output relation of the filter.
It is instructive to view (1.7) and (1.8) in the light of Gelfand-Naimark-

t
the observables of the physical system (1.1). The formula (1.8) computes the

Segal construction of states and representations. The functions x H'¢(xt) are

conditional statistics of the observables ¢ given the observation program
fys|Q§§§ﬁ}. The analogy with the algebraic theory of quantum mechanics is strik;
ing, the notable difference being that the idea of computing conditional statistics
based on an observation program seems to be absent in physies. This viewpoint turns
out to be important in the definition of generalised observables for quantum systems
as probability operator-valued measures.

It can be shown that p, has density q, which satisfies a stochastic partial

t

differential equation
) a L*q t
= +
(1.9 d o 14 qutdyt .

*
where L0 is the formal adjoint of the diffusion process generator of (1.1) and Ll
Duncan-

is the operstor : multiplication by h(x). This is tthyortensen—Zakai equation
and is the fundamental equation of non-linear filtering. The density qt(z,yg)

has a representation as a function space integral

(1.10) q_t(z,yg) = fxexp(fg h(xs)dys - %jg h2(xa)ds)duz(x)

—y A Y | r——_ e w T b e wos oo e




P T
. C . (1)
where the integration is over the path space of x with X = 0 and Xy = z.
Now in equation (1.9) the observation {ys|0§§§ﬁ} is given to us, and if we
rewrite equation (1.9) in the following suggestive form using Stratanovich caleculus:

* ]

(1.11) — = (L0 5 Li)qt + itqut s

then equation (1.11) is the analogue of a euclidean (imaginary time) guantum field

a time~dependent
with , external force defined by the observations. We say that the analogy is to
euclidean quantum field (as opposed to euclidean quantum mechanics) since qt is a
measure-valued stochastic process. This paper is concerned with a systematic inves-
tigation of this point of view. In particular, in this picture the Kalman filter
occupies the role of the free quantum field.

This paper is divided into six sections. In section 2 we discuss the rela-
ship between Dirichlet and Schrodinger operators and show that it is possible to
associate a stochastic process with the ground state measure of Schrodinger opera-
tors. Section 3 is devoted to the Bayes formula on non-linear filtering and des-
cribes the Feynman point of view for non-linear filtering. Section 4 is concerned
with the const;uction of Fock space and discussing its role in non-linear filtering.
In section 5 we argue that the Lie algebra of operators L = LA{L; - % Li,Ll} has
an important role to play in non-linear filtering. 1In section 6 we discuss the

question of representation of the filter.

This is a semi-expository paper and we have tried to concentrate on the ideas
involved and emphasize a certain point of view. The ideas come from constructive
quantum field theory as emphasized by Nelson and Segal, recent developments in ;
system theory and the theory of group representations. It is our hope that this
paper will go towards pointing in a small way the conceptual depth of stochastic

system theory which is still in its infancy.

(1) That ie as integration over the path space of x, conditioned by x0-0 and xt-z.

- e ey e e ————————
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2. The Feynman-Kac Formula, Dir --hlet and Schrodinger Operators.

2.1 Introduction

Recent work on non-linear filtering theory, euclidean quantum
field theory and the stochastic mechanics of Nelson make extensive use of
the Feynman-Kac formula and the interplay between Schrodinger and Dirichlet
operators. In particular, a stochastic process associated with the ground-
state measure of Schrodinger operators turns out to be important. 1In this

section we give an account of these ideas and the related theory of hyper-

contractive semigroups.

2.2. Preliminaries.

Throughout this paper integration with respect to Wiener measure,
the Brownian bridge measure and the oscillator measure will be important.
The relation of Wiener measure to the Laplacian and the semigroup generated
by the Laplacian will also be important. TFor simplicity we shall be concerned
with scalar-valued stochastic processes. There is no difficulty in general-
ising these ideas to vector-valued stochastic processes.

(*)
Let Q = C(JR+;R) and let W, :w ~ wt(w) = w, :Q +R be the t°P

t
coordinate function. We denote by Tt the right shift on Q. If we denote
by F_ the smallest o-field with respect to which {Wg | 0 < s <t} are measurable
and by F=o0 {wtlt > 0} , then F is the Borel 0-field of  and on (R,F) there
is a unique probability measure W such that W{W0=0}=0, the random variables
Wt -wt e eey wt -Wt are independent, Gau§sian, zero mean, with variance

1 0 n n-1l
tj’tj-l for the Jth increment. This measure is Wiener-measure. For each

x € R, the probability measure wx is defined by path translation:

(*)We shall also use the notation x(t) for x, when dealing with processes.

. o o e o+ s ey ——
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6=
w (B) = w(8 (B)) B e F , where
X X

(5)(((»)t=x+uut » XER, weQ, t>o0.

Alternatively one could have started with a Gaussian process
{wt | t >0, WO = 0 a.s} which is zero-mean and has variance lt-s] and
stationary independent increments and constructed Wiener measure as a path

space measure on CGR+;IR). For a measurable real-valued function f, define

(2.1) (Ptf)(x) = wa(f(wt))

where Ew denotes expectation with respect to wk. If the right hand side
b'd
makes sense,

(2.2) (Ptf)(x) = f fly)p(t,y;0,x)
R

where p(t,y;0,x) is the transition density of Brownian motion
1 (X-x)2
(2.3)p(t,y;0,x) = —=—— exp|(-

ot ) ,t >0, x,¥y eR.
(emt) 2

It is known that for p £(1,»], (Pt|t > 0) is a strongly continuous contraction
semigroup on LPGR). Its infinitesimal generator is - %ﬂ, where A is the
Laplacian and D(A) = HP(R) = {reLP|Df € LP in the sense of distributions}.

For certain applications we shall need to do integration with respect

to conditional Wiener measure. From the properties of Wiener measure and the

corresponding transition density of Brownian motion, for 0 < t, <... <t

m
m
wx {wlw(tl)e Al,...,w(tm)e Am} = f .H p(xi-l’xi;ti-ti-l)xA.(xi)dxi
R i=1 i
where Xy is the characteristic function of A, Xy=X, t0=0. We can then
construct a measure Wx it on the continuous paths on [0,t] with Wo=x, W£=y
;] L]

A
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with probability 1, O < tl <oon " <t
wx,y;t {w,w(tl)e Al,...,w\tm)e Am} =
n
= fr{ ifl px; ;% 3t=t, ) xAi(xi))p(xm,y;t-'cm)dxi

is called conditional Wiener measure. We have

W
X,¥3t

(2.4) Se(ai = Say(Se(waw )

for f which are functions of the values the path takes on [0,t].

This measure corresponds to the Brownian bridge process, which is the

Gaussian process Bs’ say on [0,1] with covariance
E(BB ) = s(1-t) , 0<s<t<1
In terms of this process we can write (2.4) as

(2.5)  Srlw)awy = Sr((1 - Dx+ Ty + /& B )p(x,yst)dxdyas
t

where dB represents the measure on the path space of 8.
The two processes which we have dealt with are not stationary Guass-
Markov processes. For this reason it is often important to deal with the

oscillator process which is the family of Gaussian random variables

{q., =o<t <=} with covariance * exp(~|t-s|). It is related to the operator
R > 2
Lo = - %——95 + % x2 - %, the Harmonic Oscillator Hamiltonian.

dx

2.3 The Feynman~Kac Formula.

Both in filtering theory and in quantum physics we are required to deal

with an operator on L2GR) (say),
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Ho= - 38+ V(x)
where A is the Laplacian and we need to compute exp(-tH), the semi-group
generated by -H. The Feymnman-Kac formula provides us with a representation
of the operator Tt = exp{-tH) as a Wiener Integral. The first approach
exemplified in the work of Nelson uses the Trotter Product formula to make
sense of the formula but requires information on the self-adjointness of
the operator H. The second approach proceeds by writing the formula first,
proving that it represents a strongly continuous one-parameter semigroup
and then its unique infinitesimal generator is computed. The second approach
uses probabilistic teheniques and turn out to be the more general one.

If the potential is bounded above then a general form of the Feymman-
Kac formula can be obtained using martingale methods. For this purpose
and for later use we introduce certain probabilistic machinery.

Let (Q,F,P) be a probability space and (F_, t > 0) a non-decreasing

t’
family of sub o-fields of F. Let s > O be arbitrary and a: [s,»[x £ >R and
b{s,»[x 2 - R be bounded progressively measurable functions. For any

fe CzﬂR), define A f for t > s by

af

(2.6)  (AlQ)f)(x) = Zalt,a) =5 (x) + blt,a) 5

If £(+,+) is any progressively measurable function from [s,»(x & » R,
then (At(q)f)(g(t,q)) defines another progressively measurable function of

t and q. Then it can be shown that for any £, a and b satisfying the above,

t
(2.7) fe,E(8)) - S (§—+Au)f(u,g(u>)du

Ju
s

T e s - -
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is a martingale relative to (f,f ,P) for all t > s, V f ¢ Cl'

2

([0,°[x R).
A process f satisifying (2.7) will be referred to as an Ito process with
drift b and covariance a.

The Feynman-Kac formula depends on the follow-

ing observation.
Let § be an Ito process relative to (Q,Ft,P) with drift b and covariance
a. Then for any progressively measurable function Vv:[s,?[x § *R which is

bounded below and f ¢ cl’z([o,m[x:m])

t t
S —V(u)du J —V(o)do
S t s

(2.8) e e, @) - S Eaaf - v wEw)e du
S -

(1)

is a martingale after time s.

Now define the operator

t
v Jvwau
(2.9) T, £(s,x) = [fe £(t,E(e))au_ (&)
where dus x(E) denotes the measure on the path-space of & given £(s) = x.
14
Then we can show that TZ is a one-parameter strongly continuous semi-group
and from (2.8) we conclude that its differential generator is Au + V(u).

(2.9) is the Feynman-Kac formula. When we specialize to the case when E(t)

, . . 1
is Brownian motion, then Au = 2

g %

5 and the formula reads setting s=0.

t

(2.9") (T‘t’ £ = E, lexp (S-V(W (s)@s)EM(s))].

X 0
Now this formula turns out to be valid for a much larger-class of

unbounded potentials and the semigroup TZ has strong regularity properties.

(1) This argument is an exercise in Stroock-Varadhan: Multi-dimensional Diffusion
Processes, Springer-Verlag, N.Y., 1979.

[ -
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The more general class of potentials we consider are: (H1) V is a

measurable function on R which can be written as V = Vl—\l2 with V, > 0O,

2

V., € Lp(]R) for p > 1 and V, measurable, bounded below, such that for each

2 1

compact set K in R, there exists q(K) > 2 s.t.

q
S |V2(x)| ax < o,
K

For this class of potentials, using the recent estimate (Berthier-Gaveau).

t
vt > 0, Vr > 0, K(r,t) 2 sup. E (exp{-r S V(xs)ds < ™
xeR x 0

and their refinements, the Feynman-Kac formula holds for the class of

potentials governed by (H1). If we define the operator

t
Tt(f)(X) = wa(exp (- fov(ws)ds)f(ws)) R
we have

Theorem 2.1. (Carmona) For any q €[1,»[ and t > 0,
(1) T, is a bounded operator on L? and ||’I‘t| Iq < K(1,t)

?
(ii) If q' denotes the conjugate exponent of g, then for f € Lq, g € e

f(th)(X)g(x)dx = f f(x)(Ttg)(x)dx
R R

(iii) Ty is a strongly continuous semi-group on L%

(iv) If TiT VI (x) = 4o, then Tt is a compact operator on 3.
X |

a




-11-

2.3. Schrodinger and Dirchlet Jperators.

Let -H denote the infinitesimal generator of Tt' In quantum physics we
often need to show that -H is the self-adjoint extension of - %A + V, the

imaginary-time Schrodinger operator. If V > 0 this is well known. For the

q

class of potentials given by (H1) if V € Llo

then
c

Proposition 2.2. (Carmona)

C:(]R) C D(H) and for f € C:(]R),Hf = - %(A+V)f where H is the infinitesiaml

generator of the semigroup Tt defined on LY.

In mathematical physics perturbed Hamiltonians are usually defined as
sums of quadratic forms. We briefly review this.

Let H be a Hilbert space. A gquadratic form is a map q: Q{q)xQ(q) -~ &,

where Q{q) is a dense linear subset of H , called the form domain, such
that q(+,y) is conjugate linear and q(¢,*) is linear for ¢,pe Q(q). If
al¢,¥) = q(¥,0) we say that q is symmetric. If q(,d) > 0 V¢eQ, q is
called positive and if q(¢,4) > - M]|¢||2, for some M we say q is semi-
bounded.

Let A be a self-adjoint operator on H. By passing to the spectral

(-]

representation of A, A is multiplication by x on & L20R,un). Let

n=1
N N ot 2
e = W Y 13 S xlle )] < =
n=l n=l -x

for all ¥,¢c Q(q) define
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e, v) = ¥ S x ¢n(x)wn(X)du

n=1 n

q is called the quadratic form associated with A and writing Q(A) = Q(q),

Q{A) is called the form domain of A.
2
Let q be a semi-bounded guadratic form, q(¥,P) > M ]1°. q is called

closed if Q(q) is complete under the norm

o1, = Yatu.e) + ()| [y] |2

If q is closed and DcC Q(q) is dense in Q(q) in the ||+||,. norm then D is

+1

called a form core for q. The following fact is important.

Theorem: If g is a closed semibounded quadratic form, then q is the

quadratic form of a unique self-adjoint operator. (7]

We now define Schrodinger operators as form sums on L20R). For f,
g € ci(m) define

e (f,g) = = S £(x) Vglx)ax

o 2 R

Integrating by parts

eo(f,g) = (- %Vf,g) , and hence £, is closable. The form domain
L
Q(eo) of €0 is HlGR). Let V be a real-valued measurable fn. on R and set
2 2
Qv) = {relf| S [v(x)]]f(x)]|%ax < +e}
R

on Q(so)n Q(V) define
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e(r,g) = e (f,g) + (Vf,g} wrere

1/2f,

(ve,g)=((sgav) V| %)

_ 1 1
If we assume V = Vl-V2 s.t. Vl bounded below and Vl € LlOc.’ V2 € L~ then

€ 1s the form of a unique bounded below self-adjoint operator H on L2

with form domain Q(H) = Q(eo) N Q(v).

Let be a Borel prob. measure on R which satisfies

(2.10) au(x) = e~2h(x) 4y

where h is a real-valued, locally bounded, absolutely continuous function

2
with first order partial derivatives in Lloc . Forall f, g € C:GR), define

(2.11) 8(r,g) =

O

S vr(x) Vglx)dp(x)
R

Integrating by parts the right hand side, we get

(2.12) 8(f,g) = (Df,g)u , where (',')u denotes the L2(U)—inner

product and

(2.13) Df = - %ﬁ £ + UhVE

From (2.12) § is given by a symmetric operator and hence is closable.
Let & denote the closure. & is referred to as the Dirichlet form of u and
D the associated Dirichlet operator.

We can prove that

Proposition 2.3. (Carmona) The form domain Q(38) is Hl(u).

R O e e TR Y
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We show the relationship between Dirichlet forms and Quadratic forms
associated with Schrodringer Operators. Let the potential V satisfy
hypothesis (Hl1). We assume that inf spec (H) = E is an eigenvalue and
let Y be the corresponding ground state eigenfunction.

Let h = - Logy and define the Borel probability measure u on R by

au(x) = e_2h(X) dx

Define the operator D by
= -1
(2.14) D = C(H-E)C
. . 2 2 .
where C is the unitary operator from L (R,dx) - L°(u) defined by

(2.15) co = wlo . 6 e LO(R,dx).

D is a positive self-adjoint operator in Lg(u), 0 is a simple eigen-
value and the constant function 1 is the corresponding eigenfunction.

fact
Iqﬁ? is the unique positive self-adjoint operator associated to the

closed positive bilinear form § corresponding to €-E {in the unitary
el . p—
equivalance C) and CCGR) is a core for 8.

Since P is bounded and locally bounded away from O, h is bounded and
locally bounded above. Since weQ(eo) and the first order partial derivatives
of h are in Lfoc , Wwe can associate with U a Dirichlet form § and a Dirichlet

since . a )
Operator D. Now/§ is defined as the closure ogﬂform whose domain is CCGR) and
C:GR) is a form core for 6, one can show that 8 = 6 and D = D and hence

the Dirichlet form and Dirchlet operator are unitarily equivalent to the

Schrodinger form and Schrodinger operator.
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2.4, Stochastic Processes Assc..uted with Dirichlet Forms and Dirichlet
Operators.

The unitary equivalence between Schrodinger and Dirichlet operators
exhibited in the previous section has an important role in Nelson's stochastic
mechanics and also in non-linear filtering theory.

We consider the Schrodinger operator H = - %A + V defined as a sum of
quadratic forms on L2GR,dx). We assume that inf spectrum (H) = E (assumed
to be 0) is an eigenvalue and the corresponding eigenfunction y > 0 and
normalized LR W(x)edx = 1. Define the Borel probability measure u by
dul{x) = (w(x))gdx. Let § be the corresponding Dirichlet form and D the
corresponding Dirichlet operator. Let h = -log {.

We want to construct a Markov diffusion process which corresponds to a
stochastic differential equation with drift ~-Vh. There is an obvious difficulty
in interpreting the stochastic differential equation in a strong sense. But we
can construct a weak solution using the measure transformation techniqgue of
Girsanov and the Feynman-Kac formula.

To do this we assume the ground state ¥(x) > 0, vx (by choosing a represen-

tative from an equivalence class) and we also assume that Y(x) > 0 as |x| + .

Now we use the unitary equivalence between the Dirichlet operator D and the

1 d2
operator H = - 5—>5 * V(x) to conclude that
dx
(2.16) (e~ tPr)(x) = w(x)'le [expGJB V(WS))w(Ws)f(Ws)ds]

X

where e-tD is the semi-group generated by -D.

For each t > 0, consider

(2.17) L, = w(x)'lw(wt)exp(-fg V(Ws)ds) , which

| sensnss s e Pt e i
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is a random variable, positive W _ -a.s. and wa(Lt) = 1. Hence, (Q’Ft’Lt) is
a martingale, where Ft denotes the smallest O-algebra for which the coordinate
functions Wt--are measurable. Hence for each x, Px = Lt'Wk is a probability

measure on (Q,F). t

Now by explicit calculation, V(x) = %{—Ah(x)+IVh(x)|2) and since h = -log ¥,

we get from (2.17)
(2.28) L, = expl-n(W ) + n(x) - %(ngh(Ws)ds - IBI Vh(Ww_) 12as) ]

The idea now is to apply the Ito-differential to the function h. There is a
difficulty here because the function h does not have continuous partial derivatives
upto order two. But h is a convex function and for these functions the Ito-differ-~

ential rule can be extended to continucus functions with first partial derivatives

in Lioc(}?,dx) and second partial derivatives in Lioc(li,dx). Applying the gener-

alized Ito-differential rule tc (2.18), we get

_ t 1 ¢t 2
L, = exp[-fth(ws)de -3 jol Vh(ws)l as].

Therefore by the Girsanov theorem, the process Bt = Wt - WO + fg Vh(Ws)ds is a

(F ’Px) standard Brownian and calling W, = X , the stochastic process (thtzo)

considered on the probability space (%, Ft’Px) is a unique weak solution of

Xy

(2.19) l
X
0

-Vh(XS)ds + dB,

X , 8.8,

Furthermore the measure y defined by du(x) = w(x)2dx is the unique finite

invariant measure of (2.19).
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From the construction of the probability measure Px’ we see that it has a

transition density

(2.20)  p(t,730,%) = blyW ™ (x) B, lexp-fS v(w as|w,=y] p(t,¥;0,%)
X

where p is the transition density of Brownian motion.

We remark that it is this transition density we wish to compute since this
corresponds to the fundamental solution of a parabolic partial differential equa-
tion. We shall see later the importance of (2.20) for non-linear filtering prob-
lems. For non-linear filtering problems the decay properties of this transition
density are also of importance.

We investigate these matters now.

Firstly, we can check that for v t > 0, p(t,y; 0,x) is a continuous function

of the pair (x,y). 1In fact the following estimate holds:

c,t
vt>0, Vix,y) e R xR , p(t,y; 0,x) Zeje 2 w(y)w_l(x) p(t,y; 0,x)

4 constants Cl’ c2 such that
(2.21)

If the semigroup

(th)(x) = E, [f(ws) exp(-fg V(ws)ds] is compact (see Theorem 2.1) and its spec-
X

trum is strictly bounded away from zero, then the density p(t,y; 0,x) satisfies:

4 positive constants c ¢, such that

1’ 2
(2.22)

2 -1, , "%t
sup | p(t,y; 0,x) - ¥(y)” |<eq¥(x)e ©, vyt >0, yx € R.

yeR

2.5 Hypercontractive Semigroups

In the previous sections we have seen that for a large class of potentials,

z has & negative infinitesimal generator which coincides with a
2
self-adjoint extension of - %-115 + V(x). 1In this section we point out that the
dx

the semigroup T
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semigroups defined by the Feynman-Kac formula are often Hypercontractive semigroups.
These semigroups have played an important role in constructive quantum field theory
and are likely to play an equally important role in the theory of non-linear filter-
ing.

We follow the notation, hypotheses (specially on the potential V) and the

terminology of the previous sections.

-tD

We consider the Dirichlet semi-group (e ", t>0) on Le(u) where du(x) = w(x)2dx.

Definition: The semigroup (e_tD,QzO) is said to be hypercontractive if for some

t > 0 and some r > 2, e 35 a bounded operator from L2(u) into Lr(u).II
Za
From our point of view the best approach towards the question of hypercon-

tractivity is via the approach of Gross using Logarithmic Sobolev inequalities.

Definition: The operator D is called a Sobolev generator if for some real constants

¢ > 0 and Y we have

(2.23) [ 11 vog Itlau < o), vllel)®, + 11el)®,  vosllell
R L7 (w) L (n) L™ (u) L ()

for all £ € D(D). The constants ¢ and Y are called the Sobolev coefficient and

the local norm of D.

Logarithmic Sobolev Inequality (Gross)

If 4 is a probability measure on R which satisfies:

2
(2.20) [ IelToslelaw < ef J9el7au + vlls]1® ,  +llel)® p  vesllell o
R R

L7 (w) L™ (w) u)

for some constants ¢ > 0, y > 0 and Vf which are bounded functions with distridutional

first order derivative in Lz(u), then for vr e [2, +o]

(2.25) l£2Log| flap < c(r) [ Veevs au + v||£||" +{1e1" lod | £} |
5 < olr) fews, L2(y) £2(n) 12(u)
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cr

_ [ r_l =
y £ as above., where fr (sgnf) il and c{r) (o) .

The salient facts about hypercontractive semigroups and Sobolev generators

are the following (Carmona)

Proposition 2.h. (e-tDItzO) is a hypercontractive semigroup if and only if D is

a Sobolev generator. @

Proposition 2.5. D is a Sobolev generator with Sobolev coefficient ¢ if and only if

2
-Log Y <cD + b, the above interpreted as quadratic forms on L (y), for some

constant b.

Consider potentials satisfying (H1) which have the further property:

¥xeR , alP(x) + b, <V.(x) <aP(x) +0D

1—1 2 2

vhere a, a, >0 , b, b, €R and P an even polynomial, and 1lim inf |x|-2P(x) > 0,
x|+

Proposition 2.6. Schrodinger operators with potentials of the above class generate

Dirichlet semigroups which are hypercontractive.

Example:
1 d2 a
(i) The operator D = -« = — + — generates a hypercontractive semi-group
2 dx2 dx
-tD 2 1 -X
e on LYA(R, 5= e~ dx).
/ST

(ii) Consider a stochastic differential equation:

= +
dx, f(xt)dt dv,

Suppose that the Riccati equation

g—i— + f2 = V(x) , where V(x) is an even polynomial satisfying the hypotheses

A
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of this section such that a global solution exists for the Riccati equation. Then
the generator of the associuted diffusion process is in fact a Dirichlet operator

and generates a hypercontractive semigroup on an appropriate Lg(u)-space.

Notes and References for Section 2

(i) For general references for this section, consult

1. B. Simon: Functional Integration and Quantum Physics, Academic Press,
New York, 1979.

2. M. Reed and B. Simon: Methods of Modern Mathematical Physics, Vols. I
and II, Academic Press, New York, 1972, 1975.

3. D.W. Stroock and S.R.S. Varadhan: Multi~dimensional Diffusion Processes,
Springer~Verlag, Berlin, New York, 1979.

{ii) 1In this section we follow very closely:

1. R, Carmona: Regularity Properties of Schrodinger and Dirichlet Semigroups,
J. of Functional Analysis 33, 259-296 (1979).

(iii) The material in Section 2.4 is apparently partially new and uses the Girsanov
transformation to obtain a weak solution of a stochastic differential equation.

For a slightly different approach see:

1. H. Ezawa, J.R. Klauder and L. Shepp: A Path Space Picture for Feyunman-
Kac Averages, Annals of Physics 88, 588-620 (197h4).

(iv) For the generalized Ito Differential rule, see A. Bensoussan and J.L. Lions:
Applications des Infquations Variationelles en C8ntrole Stochastique,
Dunod, Paris 1978.

(v) The reference to stochastic mechanics is: Dynamical Theories of Brownian
Motion, Princeton University Press, Princeton, N.J., 196T.




21—

3. The Bayes Formula and the Unnormalized Conditional Density Equation

Let (2,F,P) be a complete probability space, F = (Ft) », 0<t< 1 anon-
decreasing family of sub 0-algebras of F and_(nt,Ft) », 0< t <1 a Wiener Process.

Condider the signal process 2z = (z ,Ft) and the observation equation

t
_rt
(3.1) Yy = / sts +n,
0
Let
(3.2) 2, = h(xt) , and

Xy be the solution of the Ito stochastic differential equation

(3.3) d.xt = f(xt)dté-g(xt)dwt

We make the following assumptions:

Al. The functions f and g are continuous and bounded and equation (3.3) has a
unique solution in the weak sense for each initial condition xo (later we
shall have to make further smoothness assumptions).

A2. x, and n

N are independent and E(féh(xs)zds) <o,

t
Under the above hypotheses we can write down a Bayes formula for computing

E(¢(xt|F{) where F{ is the o~field generated by {yS|Q§§§p} and E(f$¢(xs)2ds) <o

This relies on the Girsanov transformation. It is known that there is a new equiv-

are independent, the distribution of x, re-

alent measure P under which Yy and X t

t

mains invariant and under this new measure Yy is Brownian motion. The Radon-Nikodym

Derivative of P with respect to ; is given by

9§ = exp(fgh(xs)dys - %-fghe(xs)ds) 4 R
dapP

£

t

\

-
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Hence

E(¢(x, )1, | F)
- Y
E(LtlFt)

124
E(o(x) | F)
Using the independence, it is convenient to view this conditional expectation as
expectation on a product space (OxQ2,AxA,POP) and write it explicitly as

A falx, (@) exp(fon(x (8))ay (0)-2 ft (8)%as) ar(®)
(3.4) ox,) =

f@exp(fo n(x_(0))dy_(w) ft (x, ds) dp(®)

This is the Bayes Formula.

If we replace y_ by x_ for x € C(O,l;ux) and define

(3.5) o(t,x,@) = exp([ nlx (@) )ax_(w)- f n(x_(@)) 23s) and
(3.6)  elt,x) = [ao(t,x,0)aP@)
du
then g(t,x) is the Radon-Nikodym derivative Eﬁx (t,x) , where uy is the measure
n

induced on C(0,1) by the observation and M is the Wiener measure on C(0,1) in-
duced by n.
Let Gt(¢) denote the numerator of (3.4). Tt will be also convenient to write

the numerator of (3.4) as a Feynman-Kac formula

(3.1) 0, (8) = [y8(€,)exp( [T n(E ay 5 [T n3(E Jau (£)

and X = C(0,1).

Let Pt be the semigroup of the diffusion process corresponding to (3.3) and
2
L. = i g (x) 3 + f iL be its infinitesimal generator. Then O, satisfies the
0o 2 ax2 9x t

stochastic partial differential equation
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(3.8) o (¢) = o, (L 9)dt + ofLdldy, , v ¢ € D(L)) N D(L,), vhere

Ll is the unbounded multiplication operator h.

This is one of the fundamental results of non-linear filtering. Now using
the fact that h(xs) is a semi-martingale and using the relationship between Ito

and Fisk-Stratanovich integrals we get

t

0 denotes the quad-

t = . - i
fo Os(h¢)dys = [ Os(hd)) dy, - 3 <0(h<1)),y>t » where <, >,

ratic variation and * denotes the Fisk-Stratonivich integral and hence

we obtain

- 1,2 . .
(3.9) do, (¢) = Ot(LOCb)dt - §0t(h $) + Ot(h¢) dy, , which
we write symbolically as

do, (¢) . 1.2 .
(3.10) 5 - ct[(LO+yth-5h)(¢)] , which

we can integrate by the Feynman-Kac formula

(3.11) Ot(¢) = EUO[exp(IB &thds - %-IB h2ds)¢(xt)]

where 00 is a measure-valued random variable independent of y such that E[00(¢)] =

u(¢) and u is the initial distribution.

Define

t

2(t, x5 ¥g

) = E[LtIO{Xt}XF{]
and define
t
alt, z, yg) = I(t, z, y )p(t,z)

where p(t, z) is the density of the x-process. Then

.
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oy ()= [ ela)ale, 2, yg)az
Now 0£(¢) = f ¢do, , and hence we see that O

N has a density g(t, z, YZ)
hence from (3.7)

(3.12)

t
alt, z, yto) = IX exp (é h(xs)dyS - % g h (x Yds)au (x)

where the integration is over the path space of x with Xq = 0 and X, = z. It

A
can be shown that q = q(t, =z, yg) satisfies the stochastic partial differential

equation

= 1.2 .
(3.13) dg, = (Lg - 2Ll)qtdt + g 8y s

where LB is the formal adjoint of LO'
Equation (3.13) is the Mortensen-Zakai equation for the unnormalized

conditional density.

3.1 Mortensen-Zakai Equations and Gauge Transformations

The study of non-linear filtering is the study of the Mortensen-Zakai equa-
tion--its explicit solution and its group invariance properties. Equivalently it

is the study of the function space representation of ot(¢) given in (3.7) and (3.12).
t
In (3.7) we have the stochastic integral [ h(&s)dys.

0

Under our hypotheses we can
write

[5 e ay_ = y,n(E) = yo(E) =[Gy an(E) .

Using the above it is clear that ¢ _ can be evaluated for all y € ¢(0,1) (not Just

t a, (¢,y)

a subset of full Wiener measure). It has been shown by Clark G—Tiij is a ver-
t

~

gsion of the conditional expectation ¢.

e e T em——— o e

- T M
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An equivalent way of considcring this problem is to eliminate the stochastic
integral from the Mortensen-Zakai equation (3.13).

This can be done by making the observation that the operator Ll = multiplica-
tion by h is a diagonal operator, and its effect can be removed via s time-dependent
Gauge transformation. To see this write q, = exp(h(x)yt)at .

Then s direct calculation shows that it satisfies an ordinary partial differential
equation (parametrized by y):

d
(3.1k) .d%“t_ = exp(-n(x)y,) (1) -3 12) (exp(n(x)y, -3, )

It is interesting to rewrite equation (3.1k4) in a form which brings out the

. . ¥ 1 2 _r 12
commutation properties of Ly ~ 5 L, and Ll - If we denote by L, = [LO--2 Ll’Ll]

and L3 = [Ll,Le] considered as formal differential operators and computed on some

common invariant domain, (3.13) can be rewritten as:

~

dq‘t *

_ 1.2, . 2 .

(3.15) at = (LO--2 Ll)qt + ytL2qt -~ yt L3qt

Explicitly L, = h 4, (l h. -th ) , L = -n (assuming g = 1 for simplicity).
2 x dx 2 xx x’ 773 x B

When we are dealing with unbounded observation operators h it is this equation
vhich is the easiest to deal with. The above alsc shows that the commutators L2

and L3 have an important role to play in the understanding of equation (3.1h).

In (3.12) we see that evaluating Q involves an integration over the path
space of the x-process. The integration would be simplified if this could be done
with respect to Wiener measure. This corresponds to removing the drift term in
the operator Ls. For simplicity assume g = 1. Define the operator multiplication

by U(x), where ¥ is invertible from the intertwining relationship.
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X
a q IO £(z)dz
(-*- - W = waz- , which defines Y({x) = e . Then the operator
-1, % 1 48 1 2 - -1
L transforms to ¥ L. = = —= <« = V(x) , where V(x) = (f + £°). Then q, = U g
0 2 dx2 2 X t
is the solution of
~ A A 1 ~ ~ -~ 1d2 l 2
(3.16) dqt = Loqtdt - §~V(x)qtdt + hqt' dyt , where LO = 5-;;— -5h
This is alsc an example of a Gauge transformation. Equation (3.15) involves the
2
- 2
(imaginary time) Schrddinger operator-%—~g§ + % h™ + % V(x). Tt should be noted
dx
that the Lie Algebra of operators LA{LO 5 Lis Ll} and LA{L -V(x),Ll} are isomorphic.

Recall in section 2 we have seen how certain Schrodinger operators are unitarily

equivalent to Dirichlet operators. (See later section also,)

3.2 Integration of the Mortemsen-Zakai Equation and Calculus of Variations

In section 3 we have seen that solving the Mortemsen-Zakal equation is equiv-

alent to evaluating the function-space integral
att,z,yp) = [y exe([ hix dy_ nf(x dds) ()

We now show how this can be done by adapting certain ideas of Feynman. Feynman's
idea was to separate the classical and quantum parts of the total gquantum motion
and also to understand the relationsﬂip between classical and quantum mechanics.
We shall attempt to separate the contribution of the observation in q, from that

of the signal process. For the class of problems considered by Bemes this can

be done explictly.

T ey s

s
e e e

~e gy -

t
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For this purpose, we consider that the X -process is govermed by
dxt = f(xt)dt + dwt , and the observation equation is

dyt = xtdt + dﬂt

H L* = 1 d2 - 4 £ and L, = mult. by x
ence L 5 dx2 ax s 1 . by x,

We do a gauge transformation and attempt to solve

dg, = L

Oqtdt - V(x)qtdt + xqtdt, where V(x)==-§(fx f £7)

Hence we have to compute:

1t 2 t
x ds - IO V(xs)ds]

~ t
(317 Gle,z,yp) = E, lexp(fg xdy -5 [ %]
W

where the integration over Wiener-measure with X, 0 and x, = z.

We show that if V(x) = ax2 +bx+c,andf + 2 = V(x) has a global solution

then a sufficient statistic for computing a is the set of equations:

‘ € = -nds £g=0,8 =2
(3.18)

(1)
( dns = -Esds - Vg(gs)ds + dys .

We call the above set of equations the bi-characteristics of the Mortensen-Zakai

equation. To see this we introduce the transformation

dxs = dEs + dzs » Where EB is given by the above and we do not impose

the boundary conditions.

(1) This stochastic two-point boundary value problem has to be given an approp-
riaste sample-pathwise interpretation.
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By essentially the Girsanov Theorem,

z t 1t 2
a, = exp(fO ndz, - 3 IO nsds)

(1)

Now impose the boundary conditions and hence in terms of the z-variable
A ty _ t 1t 2 t
q(t,z,yo) —.fexp(fo(zs+€s)dys -3 fo(zs+£s) ds - IO V(zs+Es)ds)
t 1 ¢t 2 0
xexp(fo ndz - 3 IO nsds)duz s

where the integration is over the path space of z with Zg = 0 and z, = 0.

By applying Ito's rule several times,and using the fact that V(x) = ax> + Zbx + c,

we obtain

a(t,z,yg) = exp(%-fg £y, - f; bE ds + %(znt))
(3.19)

2) 0

x f exp(—fg(v(zs) + % z)au, .

The terms involving the z-process can be explicitly evaluated.
It is worth remarking that (3.18) is the solution of & variational problem.
To see this let us first interpret equation (3.18) in the Stratanovich sense.

Then equation (3.18) are the necessary conditions of the following optimal control

problem:

1t 2 1t .2
Mliln 5 Jougds + 3 [oI(E -y )" + 2v(E )las

(@)

(1) By conditioning.

(2) This variational problem can be given rigorous meaning using recent
work of Bismut.
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If y, Z 0 and V £ 0, then the equations (3.18) correspond to the imaginary
time harmonic oscillator and our methods show the relation between a euclidean
quantum harmonic oscillator and an imaginary time classical harmonic oscillator.

These methods could also be applied to study the limiting behavior of the

Cauchy problem

5t AV T as A >0

with an initial condition wx(x,O) = exp[—So(x)/k] and show that the limiting solu-
tion satisfies the corresponding equations of classical mechanics. This would
provide an alternative derivation to the results of Maslov who treated the Schro-
dinger equation version of this problem.

Equations (3.18) is related to the smoothing problem. It turns out, that
the unnormalized conditional density could also be evaluated by the following

sufficient statistic.

do_ (f(as) - Bs)ds ;s a. =0 o, =z

0 t
(3.20)

- +
dn_ (fa(as)ns ons)ds-l-dys .

These are the Euler-Lagrange equations for the following optimal control

problem:

1t 2. 1t .2
M;n 3 IO ulds + 5 IO {la-y )" + 2V(as)}ds

o = + H = = .
a f(as) ug 3o 0 «a z

boroo o -

.- A W 4 e em e e —— RO e
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For the general Kalman filtering problem

dx, = Fxtdt + det
(3.21)

dyt = thdt + dnt

the equations corresponding to (3.20) would be

do,

- ' : = =
4 Fatdt GG Btdt ;o 0 a Z

0 t
(3.22)

~-H! - ' [
dBt H Hatdt F Btdt + H dyt

These can he recognized to be the smoothing equations given in Hamiltonian
form. Our methods show that these equations are intrinsically attached to the
Mortensen-Zakai equation and play the role of bi-characteristics corresponding to
Hamiltonian~Jacobi equations.

Although we do not do it in this paper it seems reasonable to believe that
a perturbation theory analogous to Maslov's work could be carried out for non-

linear filtering using the framework used in this section (see forthcoming work

of Duncan and Mitter).
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Notes and References for Section 3

(i) For the derivation of the Bayes formula and the Mortensen-Zakai equations

see E. Wong: Stochastic Processes in Information and Dynamical Systems, McGraw

Hill, New York, 1971 and the references cited there.

(ii) The seminal paper on non-linear filtering is: M. Fujisaki, G. Kallianpur
and H. Kunita: Stochastic Differential equations for the Non-linear Filtering
Problem, Osaka J. of Math., Vol. 9, 1972, pp 19-kLO.

(iii) Equation (3.1k4) was first derived by J.M.C. Clark: The Design of Robust
Approximations to the Stochastic Differential Equations of Non-linear Filtering

in Communication Systems and Random Process Theory: ed. J.K. Skwirzynski, Sithoff

and Noordhoff, 1978. For more recent work see for example M.H.A. Davis: A Path-
wise Solution of the Equations of Non-linear Filtering, to appear. Writing it in
a form involving the commutators makes it clear that for certain problems these
equations can be integrated using group invariance methods.

(iv) The idea of using gauge transformations in the context of non-linear filtering

theory is new, although it is implicit in the work of Benes. See also R.W. Brockett:

On the Invariance Group of the Conditional Density Equations, Proceedings of the
IEEE Decision and Control Conference, 1979, Ft. Lauderdale, Florida. The gauge
transformation can be introduced in a much more general setting.

{v) The variational interpretation of certain non-linear filtering problems in

the form presented in Section 3.2 is new and uses certain ideas of Feynman. See

for example: R.P., Feynman and A.R. Hibbs. Quantum Mechanics and Path Integrals,

McGraw Hill, New York, 19€5. For the Girsanov transformation and absolute contin-
uity of measures, see R.S5. Lipster and A.N. Shiryayer: Statistics of Random
Processes I, St -inger-Verlag, WNew York, 1977.

(vi) The reference to Maslov's work is: V.P. Maslov: Théorie des Perturbations et

Méthodes Asymptotigques, Dunod-Gauthier-Villars, Paris, 1972.
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4., Multiple Ito Integrals and Fock Space

There is a close relationship between the theory of multiple Ito integrals
and Wick polynomials. These objects also have an important role to play in
Wiener's theory of homogeneous chaos and representations of the Weyl Commutation
relations on Fock space. These ideas and constructions also are of importance
in non-linear filtering theory.

4,1 Multiple Ito Integrals

2(R¥)

The multiple Ito integral of order K is a map £+ IK(f): L > LQ(Q,F,P)

having the following properties:

K
(1) IK(h) = 1 W(Ai) ifth=1 x...x1

for
Ay Ay

disioint rectangles Al,...,AK .

(ii) IK(f+g) = IK(f) + I (g)

K

(ii1) If £, *» f in L2(]RK) then I (fj) > IK(f) in L2(

.j K Q,F,P) .

Ifk=0and he R , define Io(h) = h.
-~ l .
= = . ff.
Let f(tl,...,tK) oS ) f(tn(l)" ’tn(k)) denote the symmetrization o
~ n 2, K 2, K 2, K
The mapping f¥® f is the projection of L°(R") onto the subspace Ls(]R ) of L°(R)
spanned by the symmetric functions.

The multiple Ito integral has the following properties:

(a) For £e L2(EY) , ge 12(BY) 1(f) = T(?) and

E(T(£)1,,(8)) = 1 phy K1 (£,8)

L
2
(b) For ¢ € L(R) and A € € ,
1.2, .2 2 K
expO\fp o dw - 52 [pecds) = [ g7 [ (o . .4 dv ...dv

k=0 R "1 K "1 K

e em—— - y— —
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i
®

{1(m))r e v (R
=0 k=0

(c) 1°(Q,F,P)

i
®
=

We now consider twe applications of multiple Ito integrals

L.2 A Representation Theorem for the Best Estimate of a Signal

Consider the non-linear filtering problem

t
Yo T J’0 zsds * r]s ?

Q

and assume that the hypotheses of Section 3 (assumptions Al and A2) hold. Suppose
that we want a representation for ;s = E(zs[FZ). It is a standard result that the

innovations process
vt =Yy - IO zsds
It is well known that Vt is standard Brownian motion. Recently we have shown

N ~
F{ = Ft mod P. Hence z, € LE(Q,FE,P) and hence from property (c)

t t 51
= + +
2, = 25+ IO kﬁ ,s)dvs IO IO k2(t,s

,8-)dv_dv +.....
1°72 s, S5
and a standard application of the definition of conditional expeccation as a pro-

jection shows

2
R - 29 -
kl(t,s) = 5 L(xtvs) . k2(t’sl’52) = 83133 E(xt\)S v ) ete.

2 1 %2
This representation is not too useful since the computation of the innovations

requires computing ; However for the following problem it immediately leads to

&
a finite dimensional filter. Suppose that zg = Hxs and dxs = Fxsds + des. We are
required to estimate X and a_ = P(xs,0§§§ﬁ) where P is a polynomial functional of
X with separable kernels. Then it is not too difficult to show that the estimate

is also a polynomial functional with separable kernels of the innovations dvs =

dys - H;Sds where x_ is the Kilman filter estimate. ;
i
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The ideas of multiple Tto integrals also have applications to representing

the density q(t,z,yg) as a multiple integral expansion in the semi-martingale Ygr

4.2 Random Fields

In quantum field theory random fields (weak distributions) and their pcly-~
nomial functions (suitably defined) have played an important role. A Wiener
integral or more generally an Ito integral is an example of a random field.
Multiple Tto integrals can be considered to be polynomial functions of random
fields, provided these polynomial functions are suitably renormalized. These
are the Wick polynomials.. Orthogonal polynomials and in particular the Hermite

polynomials have a special role to play in this theory.




k.21 PRasie Definitions amd Lo ien

Let H be a real Hilb~: space, with the scalar product <e, +>, Ve

shall identify H with its topolopical dual, Let (9,A,u) be a probability space.

we denote by LO(Q,A,u) the space of real (complex)-valued random variables on

(2,A,u).
1)

Definition %.1. A continuous ( linear function

(4.1) F:H - L°(Q,A,0)

is termed a random field or weak distribution. Two random fields F. and F_ are

1 2
equivalent if for any {fl, .o ,fn} = H, the joint distribution of
Fl(fl), .. ,Fl(fn) and P2(f Yo .o Fz(fn) are the same. 7

An example of a random field which is of importance to us is one which is
"generated" by the Wiener process. Let W(t,w) denote the Wiener process for
t > 0. Define W(-t,w) = W(t,w), t > 0 and thus extend the definition to all of

R. Then if we define
(b.2) F:L2(R) » 12(2,A,1) by

F(f) = JSfdW(t,w), where the right hand side is a Wiener integral, then F is a

random field.

Definition 4.2. Given a random field F : H - LO(Q,A,U), the mean functional is

the map.

(L.3) MF(f) = E(F(f)) = SF(r)ap.

The mean functional need not exist for a1l £ € H., If it exists, then MF is a

linear (not necessarily continuous) functional on H.

(1) Continuous means if £, > £ in H then F(fi) + F(f) in probability.

p———— ————s e e » . e e e g s e —————
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The covariance functional CF : Hx H~> C is defined by

(b.b) co(f,g) = EUF(L)-M(£)][F(g)-M (g)]}

where - denotes complex conjugation. If CF exists for all f, g € H then C

F
is a positive Hermitian bilinear form on H. The variance functional VF is
defined by VF(f) = CF(f,f) and the correlation functional by
By(f,g) = E[F(O)F(0)].

The random field is said to be bounded if there exists a k > 0, such that

B (f,f < k |[f]| Vv feH

The characteristic functional bp H » & is defined by
iF(f ir(f
5) gl = ET) o gt

It is a continuous,positive definite functional and ¢_(0) = 1.
¥
Remark: Bochner's theorem extends to this in“inite dimensional situation. @
The following proposition is a consequence of the Riesz representation

theorem.

Proposition L.1. Suppose F is a bounded random field. Then there exists a

unigue vector fF ¢ H {the mean) and unique bounded self-adjoint non-negative

operators RF (covariance) and SF (correlation) such that MF(f) = <f,fF> ,

CF(f‘,g) = <RFf‘,g> and BF(f‘,g) = <8 .f,g>.
Definition k.3. A random field N such that BN(f‘,f)<°o with characteristic
function

(h.6) @F(r) = exp[iMN(f') --l?-VN(f')]

is termed a Gaussian random field.
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We shall be interested in i: normal random fields Nc with mean zero
variance parameter ¢ > 0. Itz covariance function is CN(f,g) = e<f,g>. If

= 1 then we get the unit irsonormal random field. Tts characteristic function

la]
[efl®
rf)=e 2

Now let us consider a bounded Gaussian random field N. 1Its characteristic

function can be written as:

1
= i< >-=<R >, .
(r) = expli £,f,>-5 PNf,f ]

In particular, if the bounded Gaussian random field is the isonormal field with

parameter ¢ > 0 then

RN = ol.

Let B(H) denote the Borel g-algebra of H and let U be a probability measure
on B(H). Define the random field F : H > LO(H,B{H),n) vy [F(£))(g) = <f,e>.
In this way every Borel Probability measure u on B(H) produces a random field.
Suppose F : H » L°(Q,A,v) is a random field. Then we say F is generated by p on
B(H) if F is equivalent to F. We then have

Proposition 4.2. A Gaussian randorm field N is generated by a probability measure

on (H,B(H)) if and only if the covariance operator R_ is trace class.,
(H, y P N %)
Thus if dim H=, the isonuormal random field with covariance operator ¢I, ¢ > 0
could never be produced by = countably-additive probability measure on (H,B(H)).
By the Gross construction ! "1ittines", the fipitelv additive measure corresponding

to the isonormal field can be "cxtended" to a countably additive measure

on a separable Banach apuce. ..

Ve
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G{RT) will denolte the chwarts spae o0 i fooreasing functions, and
S’(Rn) its dual, the space of tempered distributions. In the sequel it will be
often convenient to define a random field as a mapping F : V -+ L°(Q,A,u) where
V is a topological space. 1In particular we shall have occasion to take V = 3(R).
We shall often make the assumption that the random field is determined by f € V
in the sense that the smallest o-algebra w.0. to which the random variables

{F(f)]fs:V} is measurable is A. We call such a random field full.

Construction of the Unit Gaussian Random Field.

Let H be a separable Hilbert Space and let (en) be an orthonormal basis
for H. Let Rbte the one point compactification of R and let Q = T R be the
Cartesian countable product of copies of R. Q is a Compact Hausdorff space in
the Tychonov topology. Let C(2) be the set of continucus, functions on  and
let P(Q) be the set of functions ¢(xl,...,xn) in C(£) which depend only on a
finite number of copies. With the supremum norm topology C(Q) is a Banach space
and (by the Stone-Weierstrass theorem P(Q) is dense in C(Q). For ¢ € P(Q) define

n

VS
jae

s

R

k() = (2m) J”@(xl,...,xn)e dx,...dx

Then k : P(R) » R is linear and |k(¢)[<||4]|| an? hence k can be entended to a
continuous linear functional on C(Q2). By the Fiesz Representation theorem there

exists a Borel probability measure p on B(C) such that k(¢) = Sodu,V ¢ € C(Q)
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Let F(en) : 2> Rbe mi*i, lication by x,»n =1,2,... Then F(en) is a.e.

in R and hence F(en) 2 » R, meusurable. It can be shown that F(en) £ L2(Q,B(C),u)

and {F(e |n=1,2,...} generate B(¢). 1f f € Hand £ =Y a e then Z:a F(e )} con-
n &~ nn n n

verges in L°(9,B(C),11) to an element F(f). This is the unit full Gaussian Random

field on H.

. ~7ph . ,
4.2.2 Random Fields on &(R) und White Noise

Let F : S(R") > L°(2,A,P) be a random field. The derivative F' of the random
field is defined by
F'(f) = - F(£")
F' is a random field and i{ ¥ is Caussian, F' is also Gaussian. Now a random
field F : S(R®) » 1L°(Q,A,u) is renerated by a stochastic process (assumed to have

square integrable sample paths) X : R* x © » R if

[F(flw) = Sfrlx)x(x,w)dx , y£ € S(R™).

Let W(t,w) , t € {0,»] be the standard Wiener process and let F be the
Gaussian random field generated by W(t,w). The covariance functional of F can

be computed as

CF(f,g) = J;mjzw min (s,t)f(s)g(t)dsdt
= £ 12(5)=0(m) (a(t)-gle) Jdsat
where ;(t) = ftr(s)ds and ;(t) = ftg(s)as.
e 0

F' the derivative of F exists (in the sense of distributions) and its covariance

functional is given by

CFI(fsg) = C

ety = 7 v)g(t)ar = <r,g
0

2
where <,> represents the natural inner product on S(R) embedded in L°(R).

F' is white noise.

R P
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4.3 Second Quantization (Arter Segal and Nelson)

Let H be a real Hilbert space and let F : H » L°(Q,A,u) be the unit

Gaussian determined random field. If f ...,fn are orthonormal in H and ¢

1’
is a Bounded Baire function on Rn, then
2
- Ux]1©
2

S S
J; ¢(F(fl),...,F(fn)) = (2n)n/2 i;l¢(x)e dx

For concreteness (Q,A,4) may be chosen to be countably infinite copies of

2
(R,B(R), (2m)~1/2 o*/2 44

J .

If E denotes expectation on (Q,A,u) then

(L.3.1) E(F(fl)...F(f2n+l)) = 0
L5 = < > L. < . >
(k.3.2)  E(F(f))...F(f, ) d<ry T £; of,
1 1 n n
where the sum of over all pairings of 1,...,2n i.e. il<...<in; il<jl,...,in,3n,

and (ll’Jl""’ln’Jn) is a permutation 1,...2n.

LP(2,A,1) is denoted by LP(H) and T(H) denotes L°(H). T(H) . be the closed

<

linear span in T'(H) of all elements of the form F(fl)"°F(fm) vith m<n and let

F(H)n denote the orthogonal complement of T(H) in T(H) For f

<n-1 fﬂ' l,...,fn in H

we define the Wick polynomial
: F(£))...F(£))

to be the orthogonal projection of F(fl);..F(fn) into F(H)n. In the special case,

2 -1/2 -X2/2
where H is one dimensional and hence r'{H) =1 (R,B(R), (2m) e dx), I‘(H)n

iz the one dimensional subspace spanned by the nth Hermite polynamial and x"
is the nth Hermite polynomial normalized so that the leading coefficient is 1.

We have the formula

(b.3.3) <:F(f )...F(fn): , :F(gl)...F(gn):> =

>...< >.
1 (fn(l)’gl fn(n)’gn

a0 7
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where the sum is over all permut-tions m of 1,...n. 1If all the f's and g's
are equal, we get
n n 1 ® n 2 —x?/2
(h.3.4)  <:F(e): , F(F)Y> = 7= Jix:)%e dx = n!
“ ~oo

Let Hl be the complexification of H and let Hn denote the n-fold Hilbert space

symmetric tensor product of Hl with itself. On Hn we define the inner product

such that
.3.5 Syr %) (X =Y
Geas) smln, @ r)s Smley Qe (D8,)> =200y 087 STy )08,
where
p -~ 1 :
4.3.6 S5, - = = N\ -
(e 3 ) .m(le() k)_(/ fn) ! ? fﬂ(l)® \2(, fﬂ(n)

(4.3.3) and (L.3.5), we see
From A that the manping :F(fl)...F(f‘n): - Sym(f‘l®...®fn)

extends uniquely to a unitary operator from F(H)n onto Hn' We use this mapping

to identify T(H)n and Hn' Analogous to the fact that the one-dimensional Hermite

i)
o} _1/0 —x©
polynomials span L°(R,B(R)., (om) 1/‘e x7/2 dx), Segal proved

(Lo3.7) () = Hn, for arbitrary real Hilbert space H.

0

it 3

I

[{il) is Fock Space.

If the random field F(f) = ffdW, where f € L2(R) = i and W is the standard
Wiener process, then elements of F(H)n are multiple Wiener integrals (in the
sense of Ito).

The space ['(H) is intrinsically attached to the structure of H as a real
Eilbert space. Thus if U : H » K is an orthogonal mapping of one real Hilbert
space into another, it induces a unitary mapping I'(U) : T(H) + I'(K), where on
Hn, T(U) = Uix ...(x.U . ¢imilarly if I : H » K ic an isometric embedding then

n-fold it induces an isometric embedding

I'(1) : I(H) = I'(K) and similarly for an orthogonal projection E : H -+ K.

s mEn e W e —— e
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If A : H™> K is a contraction then I'(A) : T(H) > T(K) is defined to be the direct

r : > K , ]
sum of (A)n B > K, vhere F(A = alx).

“mmm. o ——
n-fold

. Now any contraction A : H + K

can be decomposed as

H —- ~)~HﬂK-———-) KG)H
x el

where I, U and E are as above.

Hence T'(A) = T(E)I(U)T(I). Now TI'(A) is doubly Markovian in the sense that

a>0 =>T(A)a >0

(4.3.8) TI'(a)r = 1

Er(A)a = Eo |,

Any doubly Markovian operator is a contraction from LP to Lp.

1t turns out that T(A) sas stronger contrq-tive properties and the precise

statement of this is an important theorem of Nelson.

Theorem b.3.1 (Nelson HypgrcontractivityfTheorem).

Let A : H > K be a contraction. Then I'(A) is a contraction from Lq(H) + 1P(K)

for 1 < q < p < = provided that

(h.3.9)  |[A[l J
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If (L4.3.9) does not hold then T{A) is not a bounded operator from L(H) + LP(K).

L.L  Absolute Continuity of Gaussian Random Fields

o}
Let ¢ be a Gaussiau ' random ftield H > L°(0,A,u) = I'(H). We consider
the following related givco Toras:
(1) Given A : H - H linear, continuous when is there a unitary map

U : T(H) » T(H) so that
U e(rut = ¢(Af) V f ¢ H?

(2) Given A as in (1) when is there an F in T(H) so that each ¢(f) is a CGaussian
. . 2 . . . 1 2 .
random variable with respect to |F} du but with variance 5"Af|| instead
1 2
=i .
ot 1121
(3) Given two Gaussian random fields with general covariance on the same Hilbert
space H when can they be realized on a single measure space but with two mutually
absolutely continuous measures?
The above problems are essentially equivalent and we present an answer to
(3) under the assumption that A is positive and has a bounded inverse.

Theorem b, 2.1 (Feldman, Se¢al, Shale)
2
(

Let ¢ : H > L°(Q,A,1t) be a Gaussian unit rondom field and let A : H + H

be linear, bounded, positive with bounded inverse. Then a necessary and suffi-
cient condition for the 5aussian random field on H with variance %IIAfIIQ to

be realizable on  with measure V equivalent to Y is that A - I be a Hilbert
ohmidh Operator.

G

-

Fock space has an important role to play in the study of the free Quantum
field which can be considered to be an infinite assembly of non-interacting har-

monic oscillators.
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2
Consider the harmonic oscillator hamiltonian H = - }-415-+ % x2 as a self-
dx
adjoint operator on L2(IU . If instead we work with Le(ﬁh g), where g is Gaussian

measure then the action of H on the Hermite polyromials hn is given by hn B n hn'

group ;
From this it is clear that the one-parametegﬁgl generated by H acts as
2,, =1/2
. ~-x /2
h b elnt11. If wedenote by W the unitary map f(x) > f(x)L—l— et / ]
g ° VoT

2
L(R) ~ Lg(nw then the operators p = i éi and g = X on Lz(nﬂ transform to
2
t

p' = pr-l and q' = qu—l and %(p' + q'e) can be identified as the Harmonic Oscil-
lator hamiltonian. By the ideas of second quantization described in section 4.3,
we can extend the one-dimensional case to an infinite dimensional setting. When
this is done this gives rise to the particle representation of the free field and
the concept of a number operator.

Shale's theorem on the equivalence of Gaussian Random fields essentially shows
that the Kalman filter is analogous to the free quantum field. This can be done

by noting that the observations and innovations processes are related by

v = (I-K)y where X is a Hilbert-Schmidt operator.
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5. Some Lie Algebras of Interest in Filtering Theory.

Let us recall that in cection 3we showed that the unnormalized conditionel density

of Xy given the observations {yelO <s f»t} satisfies a stochastic partial differ-

ential equation '

*
(5.1) dqlt,x,w) = Loq(t,x,m) + qu(t,x,w)dyt

*
where LO is the formal adjoint of the generator of the diffusion process corres-

ponding to the stochastic differential :

(5.2) dx, = f(xt)dt + g(xt)dwt s
l

*

and hence LO is given by
2

* 1 4 2 4

{5.3) LO =3 58 - Ox o,
dx

and
(5.4) L, = Multiplicaticon by h(x).

. * 1l .2 * 1.2

The Lie Algebra of operators LA{LO - 5L Ll} generated by Ly - 5 L; and

Ll have an important role to play in filtering theory. This comes about by writing
equation (5.2) in Stratanovich form {a fact which can be justified rigorously urder
the hypotheses we have adopted)
3 * 1 2. o
c ' 29 = LA
(5.1) 3t (tax) (L, = FLy#y, Lydale,x)
This suggestive form of writing is meant to show the anology of the filtering

probiem with the interacti v picturc of uantam physics

Doe

It turns out that a number of filt.ring ;roblies cive rise to Lie Algebras
of operators which are representations of known algebras which arise in mathematical

physics.  We firnt summari:« these known fact: about come Tiie Alpcbras arising in

e e e
mvrean e W T m o = e wem R




PRI

mathematical physics.

£.1. The Heisenberg Algcbra and the Weyl Algebra.

Let n > 0, and let. (pl....,pn,ql,...,qn,z) be a basis for a real vector space

V. On this space we can detine the structure of a Lie Algebra by defining

[pi,qi] = —[qi,pi] = z, the other brackets between elements of the basis being

zero. Let us denote this Lic Algebra by N, The centre of Nis Rz and we have

[N,N] = Bz and hence this Liec algebra is nilpotent.

If N is a Lie algebra with centre ¢ and if ¢ = [N,N] and dim ¢ = 1, then N

is a Heisenberg algebra.

Proposition 5.1

Let N be a nilpotent slcebra. Suppose that all characteristic ideals(l) of N

are of dimension < 1. Then either N is zero or a Heisenberg algebra.
7.

We denote the algebra -lefined by 2n-generators pl,ql,...,pn,qn and the bracket

relations

[p.,a.] = 1.
1 1
lrin,l = [pim‘j] = [oi,q'i] =0 for 1 # J§

by An(Ei) or simply An' These are the so-called Weyl algebras.
iy i
1

Elements of the form p. .9 ! -..,pnn,qnn (il’j

R t
1 1»-++»1 3 €N) generate the

vector space An'

In the vector space 1 = E?[Xl,...,Xn] let Pi be the endomorphism 3 and

BXi
Qi the endomorrhism of multinlicatinon by Xi' We have

[Pi,qi] = 1.

[Pi,QJ] = [Pi,P'.l] = [Oi"‘?n] =0 for i # J

(1) Let g be a Lie ulgebra. A derivation of g is a linear mapping. D: g-+g such

that D([x,y]) = [Dx.v] + [x.Dy] vx, y € gq. A characteristic ideal of g is a
subspace which is stable tor all derivations of g.
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and hence there exists a homomorphism p: An > End(E) such that O(pi) = Pi and
il jl in J.n
o(qi) = @ for all i. The elements P.7Q, 7w P Q, are linearly independent
i) i

and therefore the elements pllql yes .,pnnqnn form a basis for the vector space An

and ¢ is injective. It follows that A = A1‘>9 yeaa, A {(n-copies). The repre-
sentation p of An in E is termed the standard representation. Finally E is a
simple An-module and the set of An-endomorphisms of Eis R.

Let Bm be the set of linear combinations of
i jl il jn
i+ j, +...+ 1 + 3
pl q1 N ,pn qn € An such that 11 Jl 1n Jn <m

Then BB (C B
m 1] L}
m m+m

Consequently the graded algebra associated with An equipped with the filtra-
" tion (BO’BI"") is the polynomial algebra in 2n-variables.

Proposition 5.2

(i) An is integral and noetherian.
{(ii) The centre of A is R.
(iii) The algebra A is simple.

.
Proposition 5.3

Let P1sQqseesP 5a be the canonical generators of An. Let us define vector

subspaces S,T of An as follows:

n
(1) S = J {lrp.+rq.) | reR}.
. i
i=1
(ii) T = {Xp.a,*+q.p.) + rp,p,+ra.q,) | reR} .
14i,4n ¢ 14 R
Then:

(i) R @ S and T are Lie sub-algebras of Al

(ii) R @® S ir a Heisenberg algebra .

7
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The relationship betwern U icenbere and Weyl algcebras is given by

Proposition 5.4

An(m)w U(NY/a

where U(N) is the envelopins algebra of the (2n+l)-dimensional Heisenberg Algebra

N and J is a two-sided ileal in U(N).
a

.
e

o

The Oscillator .ilgebra.

The real Lie alpebrs with 2n + 2 generators (h,pl,...,pn,ql,...,qn,z)

satisfying the bracket rc¢lutions

[h,pi] =q; [}uqi] =P s [pi,qi] = z , and the other brackets being zero

is defined to be the oscillator algebra. This is a solvable Lie algebra. This
algebra is the semi-direct sum of the one-dimensional algebra spanned by h and

the Heisenberg algebra N.

5.3. The Poisson Bracket Algebra.

Consider R°D = {{q,p) | q = (ql,...,qn) , P = (pl,...,pn)} with its stan-
dard symplectic structure {see later section). TFor f,g € 6nCR2n) , the Poisson

bracket is given by

{f,g} =

il o~

(.a.f_.as__a_r;.ag_>

1\ oy i 9%

The real vector space of polynomials in (q,p) denoted by Pn is a Lie algebra under
the Poisson bracket operation.

Proposition 5.5

L
Pn is generated by the two polynomials 9 and h = p2 + 9 if n=1 and 9 and
n 5 L n-1
h= ) (pf+aq)+ ] a. aq, if n > 1. That is P_ coincides with the smallest
i=1 i i i=1 i Ti4] n

Lie subalgebra Qn containing 9 and h,

il ke

‘ P POt
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Proposition 5.6

Pn/}i is simple.

5.4 Examples of Non-linear Filtering Problems and Their Lie Algebras

Example 1.

Consider the non-linear filtering problem

ax,,

f(x, )dt + aw
(5.5) v t

I

dy, h(xt)dt + dn

t

a0
and let us assume that £, h € C {IR) . In the light of section 3, the Mortensen~

Zakai equation is

R _qo* 12 .
da, = (LO~? Ll)qtdt + Lya,dy,
2
* 1 d d
where I., = - —= - - T
0 2 dx(_ dx

L, = multiplication by h(x).

We then have

Proposition 5.7

* 2
LA{LO-%-LI, Ll} is finite dimensional only in the case

(i) nh =ox + B.

{ii) £+ f2 = ax2 +bx+c ,

o
where the Lie algebra of operators is computed on the common domain C (R) or S(R) ‘B
In the above if we want the diffusion process to be defined globally on R,
o .
so we assume that the Riccati equation fx + r2 = ax” + bx + ¢ has a global solu-

tion.

The example covered by Proposition 5.7 has recently been considered by Benes.

From Section 3.1, we can see that we can remove the effect of the drift by a Gauge
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transformation. From (3.15) we see that it is enough to solve
J = . - / e t 4 = .
d4, = Lya,dt V(x)qtdt hq, * 4y,
But LA{LS - %Li, Ll} > LA{EO - V(x;,Ll}, and under the hypotheses of Proposition

5.7 the second Lie algebra has a basis consisting of the elements

L

A~ 2 ~ _ _ d_ -
L. - L], Ll,[LO - 2Ll, Ll] =L, =03 » [Lg, L2] ol.

0 2

This however is essentially the Harmonic Oscillator algebra and corresponds

(essentially) to the filtering problem
‘ X, =W,
dyt = xtdt + dnt

which is a Kalman filtering problem.

It should also be remarked that there is no difficulty in extending this

example to the multi-dimensional situation

dxy

f(x, )dt + dwt

4

dyt thdt + dﬂt ’

provided f: R® + R" is VF = (%%— s eee s %%—)' and H:R® » R°. This fact is also
1 n

clear from our considerations relating Schrodinger and Dirichlet operators.
¥inally, this problem is the analogue of the imaginary time Harmonic Oscillietor

problem with an external force.

Jotmme oo
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Example 2.

Consider the non-linear filtering problem

(5.6) 3
dy, = xtdt + d”t .

This is the so-called cubic sensor problem. From Proposition 5.7,

2
LA{%'Q—E - %x6, x3} is infinite dimensional. From the calculations required to
dx

establish Proposition 5.7 it can be shown that the Lie algebra is isomorphic to

the Weyl algebra Al which is simple.

Example 3.
Consider the model given by (5.5) and suppose that fx v £2 = V(x) has a
global solution where V(x) say is an even positive polynomial (other than the
1.2

quadratic). Then from Proposition 5.7, LA{LS -~ L

5L Ll} is infinite dimensional.

Even more, these Lie algebras (modulo their centre which is R) are simple.
This fact follows by doing calculations similar to those involved in establishing

that the Poisson bracket algebra is simple.

Example k.

Let us consider the model of (5.5) and let f, h & C (U) where U is some

open set in R, Then by restricting L* - lLi and L. to Cé(U) the Lie algebra

0 2 1
LA{LS - %Lf, Ll} is finite dimensional only in the (prototype) case
(i) h=x°
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Note that the last equation (Riccati) has finite escape time.

Suppose we consider the slightly more general model

Ydw

. C w
dx, = f(xt)dt + p(x A where £, g € C (U)

t t

U open in R and g(x) > 0, x € U. In this case we can remove the diffusion

term g by a non-linear smooth change of coordinates.

Let x, a(zt) where o is smooth and invertible. Then by the Ito differen-

tial rule

- 1 -
dx, = adz, + 5% dt f(a(zt))dt + g(a(zt))dW£ .

Hence

az, = (o) "M rlalz ))as - Zu (z.))at + (o) elalz,))av,

Let o satisfy the differential equation

L = glalz)),

and let I be the maximal interval in R on which the solution is defined. Then

dz, = (glalz,)) 7 r(alz,)) - 28, (2, ))at + aw, = F(z,)dt + aw, .

t
The observation equation is
dyt = ﬁ(zt)dt + dn, where h = h(a(zt)).
How it is easy to see that
142 2 14 1,2 145 4 1.2 &
LA{E;Eg --éd—xf‘-gh,h}-LA{-g-'d:é'—a?-—g-h,h}

, P i
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where the first Lie algebra is computed on the common invariant domain Cm(U)
and the second on the common invariant domain Cw(I).

5.5 Significance of the Results

If the Lie Algebra LA{LZ - %—Li,Ll} is finite dimensional, then it should be
possible to construct the filter by integrating the Lie algebra. We consider this
aspect of the problem in the next section. If the Lie algebra is infinite dimen-
sional and simple then we conjecture that it cannot be represented by a Lie alge-

bra cof vector fields with analytic coefficients. That is, we cannot represent

t
the solution q(t,z,yo) of the Mortensen-Zakai equation by means of a finite dimen-

sicnal sufficient statistic described by a vector differential equation
c o7 - +
(5.7) qo, = ala Jat + vladdy, .

Suppose we are interested only in computing unnormalized conditional statistics

#(x,). 1If we denote this by ¢,, then

t,
& = j ¢{z)q(t,2 yt)dz
t ]R bl bl 0

It may be possible to represent ¢t as the output of a vector differential

system:

dor, = a(at)dt + b(at)dyt

¢, = c(ost)

A theorem of Brockett says that for thic to be possible there must exist a

*
homomorphism tetween the Lie algebra of operators LAfLO - %-Li,Ll} and the Lie

algebra of vector fields a - % bxb and b such that under the homomorphism

e T— W e —— —




L. -

LI |
o~ 2

L. Pa-

N

bxb and h'f> b, This would surgest that the ideal structure

=

. * 1 .2
of the Lie Algebra L = LA{(LO -5 1L,

Ll} should be important. If there exist non-
trivial ideals 1 then & candidate for such a homomorphism would be $ : L =+ L/T
The results of this section show that for a large class of problems this line of
attack will not be possible, since the Lie algebra L is infinite dimensional and
simple.

A possible approach might be to represent ¢t as the output of a delay system,

that is look for a representation of the form

do, = al

+ Yat + bla

%% g NP

~ _ t0
¢t = I-BC(at’at—O)de

There is some reason to believe that it might be possible to do this for the

cubic sensor problem considered in Example 2,
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Notes and References for Section 5

(i) The idea of studying the Lie Algebra of operators involved in the Mortensen-
Zakal equation is independently due to R.W. Brockett and myself. I was motivated
by the analogy between the Kalman filter and the Free Quantum field and I discussed
these 'ideas in a series of lectures in the University of Maryland in December 1977.

this
In connection see: R.W. Brockett: Remarks on Finite Dimensional Non-linear Esti-

~

mation, presented in the Conference on Algebraic and Geometric Methods in System
Theory, Bordeaux, France, September 1978, to appear in Asterisque, 1980.

S.K. Mitter: Filtering Theory and Quantum Fields, presented in the Conference on
Algebraic and Geometric Methods in System Theory, Bordeaux, France, September 1978,
to appear in Asterisque, 1980 and the references cited in the above two papers.
(ii) For the material on Heisenberg and Weyl Algebras see: J. Dixmier: Algébres
Enveloppantes, Gauthier-Villars, Paris, 197k.

Propositions 5.5 and 5.6 oﬁ the Poisson Brackett Algebra are due to A. Avez and

A. Heslot: L'algebre de Lie des Polyndmes en les Coordonnées Canoniques munie

de Crochet de Poisson, C.R. Acad. Sc. Paris t. 288 Serie A, Mai 1979, pp. 831-833.
(iii) Proposition 5.7 is due to Daniel Ocone and is related to non-linear filtering
problems first introduced by V. Benes. See D. Ocone: Doctoral Dissertation,
Mathematics Department, M.I.T., June 1980 and V. Benes: paper to appear in
Stochasties, 1980.

(iv) The content of Examples 2 and Examples 3 are new and due to Daniel Ocone and
the author. The content of FExample b is due to Daniel Ocone (forthcoming Ph.D.
dissertation) and R.W. Brockett: loc. cit, paper in Decision and Control Confer-
ence 1979. o 1;;:: P |

{v) The reference to the theorem of Brockegﬁ cited in:seétion 5.5 is contained

in R.W. Brockett: loe. cit.

(vi) Recent work (unpubliched) by John Raras as well as M. Hazewinkel and S. Marcus

shows that the bilinear filtering has a nice ideal structure and many filterations.
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6. Representation of the Filter

The complete solution of the non-linear filtering problem requires computing
the proragator of the Mortensen-Zakai equation or equivalently the unnormalized
cenditional transition density q(t,z,ygls,x). We have discussed several approaches
to computing the density q(t,z,yg). For the class of problems considered by Benes

the propagator could be computed by solving the two-point boundary value problem

dé_

]

_anT;gszx ’Etz

dan

. -ETdT - V{)(&T)d'r + dy.

according to the development of section 3.2. This is the approach of functional
integration.

The Lie-algebra viewpoint to computing the propagator would require that the
Lie algebra be integrable. This is a difficult question as we can see by discussing

the commutation relationship nf quantum mechanics.

£.1 Canunical Commutation Folations and their Unitary Representations.

Consider 2 massive spinless, nonrelativistic particle. Its configuration

space is typically L2(R). The position operator g : L2(R) -+ LQ(R) is defined

b&. o kB An A 7

be
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as the operator with domain

D(q) = {re L2(R) | xf(x) ¢ L°(R)}  ana
(6.1)

(af)(x) = x f(x).

2
The momentum operator p : LZ(R) + I7(R) has domain

( D(p) = (f e L3(R) | £' € 12(R)} and
6.2)
pr(x) = 13,

The Schwartz space S{R) c D(q) N D(p), S(R) is dense in L2(R) and is left

invariant under q and p. Moreover on S(R) they satisfy the Heisenberg Commuta-

tion Relations

(€.3) @gp - pq = i1

Since p is self-adjoint, the operator U(a) e_lap, a € R is unitary

and the operators

{u(a) | a € R} forms a one-parameter strongly continuous unitary group.

Now D(q) is invariant under U(a),a € R and it can be shown that

(6.4) Ula)qu{-a) = q - a I on D(q).

This is the Schrddinger form of the Canonical Commutation Relatioc.s.

Since q is self-adjoint it generates a. strongly continuous one-parameter
unitary group V(b) given by
(6.5) vib)r(x) = e Ye(x).

It can be shown that

(6.6)  Ula)v(b) = e'™Pv(v)ula)
This is done by first checking it on S(R) and then extending by continuity

to all of LE(R).

(6.6) represents the Weyl Form of the Commutation Relation:.
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It is a well known fact tha! the Heisenberg form of the canonical commutation
relations do not give rise to a unitary grour representation, while the Schrodinger
and Weyl forms do. This gives rise to the following general question: Suppose we
have a representation of a lLie algebra g by skew-symmetric operators defined on a
common invariant domain D in a Hilbert space H and let G be the simply connected
Lie group with Lie algebra g. When does the representation of g come from a uni-
tary representation G?

The answer to this question is connected with questions of essential self-
adjointness and the existence of a2 common dense set of analytic vectors. We dis-

cuss some of these questions now.

Let G be a Lie group and X a Banach space. A representation T of G is a

mapping G > L(X) : a b T(o) , where L(X) is the set of bounded operators such

that T(e) = I, e being the identity element and T(al° ) = T(al)T(ug), for all

%2
a, a, € G and yx € X, a bt T(a)x is continuous (with X the norm topology).
The representation is called unitary if X is a Hilbert space and each T{a) is a

utAsi ittt )

unitary operator.

A vector x € X is an analytic vector for T in case the mapping a P T(a)x :

G =+ X is analytic.

The salient facts connecting representations and analytic vectors are:
Theorem 6.1: Let T be a representation of a Lie group G on a Banach space X,
Then T has a dense set of analytic vectors in X. 7

The answer to the question raised earlier in the section is contained in

the following theorem and corollary due to Nelson:

Theorem 6.2: Let g be a Li~ algetra of skew symmetric operators on a Hilbert space H

having a common invariant domain D. Let Xl,...,Xd be a basis for g, A = X§+...+X§.
If A is essentially self-adjoint, then there is on H a unique unitary represen-
tation U of the simply connected Lie Group G having g as its Lie algebra such

that for all X in g, U(X) = X (bar denotes closure of an operator).

N
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Corollary 6.3: Let g be a real Lie Algebra, H a Hilbert space. For each X in g
let p(X) be a skew-symmetric operator on H. Let D be a dense linear subspace of
H such that for sll X, Y in g, D is contained in the domain of p(X)p(Y). Suppose

that for all X, Y in g, x in D, and real numbers a and b,

plaX + bY)x = ap(X)x + bp(Y)x
p([x,¥D)x = (p(X)p(Y) - o(Y)p(X))x
Let X,,...,X; be a basis for g. If the restriction A of p(Xl)2+...+p(Xd)2 to D

is essentially self-adjoint, then there is on H a unique unitary representation

U of the simply connected Lie group G having g as its Lie algebra such for all X

in g, U(X) = p(X).

Corollary 6.4: Let g be a real Lie algebra with a basis X s+e-sXys G the simply
connected Lie group with Lie algebra g, H a Hilbert space, C a dense linear sub-
space of H. Letp be a representation of g by skew-symmetric operators with domain
C. Then there is a unitary representation U of G such that C is the space of in-
finitely differentiable vectors for U and U(X) = p(X) for all X in g if and only if
)2 2

+...+0(X

1 d)

is essentially self-adjoint and C =(f:= D(E™).

1

How do these ideas relate to the representation of the filter? Firstly, the
equation we are dealing with is a stochastic parabolic equation valid for t > O.
Hence the operators L; and L1 will in generﬁl'only geﬁéfqﬁe semi-groups. Consider
the Kalman filtering problem (or any:problem Gauge equivalent to it). Then what
is necessary is to give a precise meaning to the time-ordered operétor product

e e e e o ti >0

as an evolution operator (in the sense of Kato). For the Kalman filtering this can

- —v——— e e

At

P
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be done using special methods. “here are examples, like the estimation of a Bessel
rrocess in additive white noise where this appears not possible to do. To see the
connection to unitary representations of Lie groups, it might be best to complexify
and try to check the cenditions of Nelson's theorem. We conjecture that if the Lie
algebra representation does not extend to a unitary group representation then we
shall not be able to give meaning to the time-ordered operator product considered

above.

Finally, the most direct way appears to be to try to integrate equation (3.15)

of Section 3
)q +yLi1—y2L?1
t 2™ t737°t

but the question of integrating the Lie algebra also appears here.
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Notes and References for Section 6

(i) For a detailed account of group representation theory relevant to this section

see, A. 0. Barut and R. Raczka: Theory of Group Representations, PWN-Polish Scien-

tific Publishers, Warsaw 1977. The exposition given here closely follows:

E. Nelson, Analytic Vectors, Annals of Mathematics, 70, 1959, pp. 572-615.

(ii) The details of treating the Benes and similar problems using Group Invariance
and Lie Algebraic ideas will appear in a joint paper by J. Baras, S.K. Mitter, D.

Ocone. See also D. Ocone, forthcoming Doctoral Dissertation, M.I.T., June 1980.




A3~
Acknowledgements: Much of the wo ik reported in this paper is joint work with
aniel Ceone of the Mathematics Department, M.I.T. and John Raras of the Univer-

sity of Maryland. The germinal ideas were discussed in a set of lectures given
at the University of Maryland in December 1977. The material of the paper was
discussed in detail in a one-semester seminar at M.I.T. in Fall 1979. John Baras,
University of Maryland and Eugene Wong of fhe University of California, Berkeley
were important participants of this seminar. I Gant to thank them for their coop-
eration. T have been profoundly influenced by the seminars of Irving Segal espec-
offered
ially his course: Physics from a Fundamental Mathematical StandpoinEAén 1976-1977.
The idea of using Gauge Transformations (and their significance) originated in con-
versations with M.5. Narasimhan of the Tata Institute of Fundamental Research. Con-~
versations with V. Benes of Bell Telephone Laboratories, R.W. Brockett, Harvard Uni-
versity, M.H.A, Davis, Imperial College {(while visiting M.I.T. in Fall 1978), R.
Hermann, M.I.T. and 5.I. Marcus of the University of Texas, Austin have also influ-

enced my thinking.

-t —— e § ¢ me me e e

jo







